Work-function engineering of graphene electrodes by self-assembled monolayers for highperformance organic field-effect transistors

Jaesung Park,¹ Seon Ho Kim,¹ Sung Hyun Sim², Byung Hee Hong,² and Kwang S. Kim¹

¹Center for Superfunctional Materials, Department of Chemistry, Pohang University of Science and Technology, Pohang 790-784, Korea, ²SKKU Advanced Institute of Nanotechnology (SAINT) and Center for Human Interface Nano Technology (HINT), Sungkyunkwan University, Suwon 440-746, Korea

Kim@postech.ac.kr

We have devised a method to optimize the performance of organic field-effect transistors (OFET) by controlling the work functions of graphene electrodes by functionalizing the surface of SiO₂ substrates with self-assembled monolayers (SAMs). The electron-donating NH₂-terminated SAMs induce strong n-doping in graphene, while the CH₃-terminated SAMs neutralize the p-doping induced by SiO₂ substrates, resulting in considerable changes in the work functions of graphene electrodes. This approach was successfully utilized to optimize electrical properties of graphene field-effect transistors and organic electronic devices using graphene electrodes. Considering the patternability and robustness of SAMs, this method would find numerous applications in graphene-based organic electronic devices such as organic light emitting diodes and organic photovoltaic devices.